秒杀/抢购相关问题

秒杀/抢购是做商城不可避免要遇到的问题.

秒杀/抢购带来的问题

抢购、秒杀、抽奖、抢票等一般都会出现以下问题

  1. 对现有网站业务造成冲击,秒杀活动只是网站营销的一个附加活动,这个活动具有时间短,并发访问量大的特点,如果和网站原有应用部署在一起,必然会对现有业务造成冲击,稍有不慎可能导致整个网站瘫痪。

解决方案:将秒杀系统独立部署,甚至使用独立域名,使其与网站完全隔离。

  1. 用户在秒杀开始前,通过不停刷新页面以保证不会错过秒杀,这些请求如果按照一般的网站应用架构,访问应用服务器、连接数据库,会对应用服务器和数据库服务器造成负载压力。

解决方案:重新设计秒杀商品页面,不使用网站原来的商品详细页面,商品相关数据使用缓存,商品页面内容静态化

  1. 假设商品页面大小200K(主要是商品图片大小),那么需要的网络和服务器带宽是2G(200K×10000),这些网络带宽是因为秒杀活动新增的,超过网站平时使用的带宽。

解决方案:因为秒杀新增的网络带宽,必须和运营商重新购买或者租借。为了减轻网站服务器的压力,需要将秒杀商品页面缓存在CDN,同样需要和CDN服务商临时租借新增的出口带宽。

  1. 超卖现象,库存数量是有限的,如果同时下单人数超过了库存数量,就会导致商品超卖问题

解决方案:
要解决“超抢/超卖”的问题,核心在于保证检查库存时的操作是依次执行的,也就是串行的,即使有很多用户同时到达,也是一个个检查并给与抢购资格,一旦库存抢尽,后面的用户就无法继续了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//下面是伪代码
//开抢前redis设置商品总库存list列表
for($i = 0; $i < $goods_store; $i++)
  \Redis::lpush('goods_store',1);

//开启秒杀
$user_id = \Session::get('user_id'); //当前抢购用户id

$count = \Redis::lpop('goods_store'); //移出并获取列表的第一个元素 相当于商品总库存减去1 这里是原子性操作 不存在并发问题

if(!$count)
  return '已经抢光了哦';

$result = \Redis::lpush('order:1',$user_id);// 记录抢购成功信息

if($result)
  返回给前端 抢购成功 然后跳转另一个页面下单处理

秒杀业务分析

    1. 正常电子商务流程(1)查询商品;(2)创建订单;(3)扣减库存;(4)更新订单;(5)付款;(6)卖家发货
    1. 秒杀业务的特性(1)低廉价格;(2)大幅推广;(3)瞬时售空;(4)一般是定时上架;(5)时间短、瞬时并发量高;

秒杀架构原则

    1. 尽量将请求拦截在系统上游传统

秒杀系统之所以挂,请求都压倒了后端数据层,数据读写锁冲突严重,并发高响应慢,几乎所有请求都超时,流量虽大,
下单成功的有效流量甚小【一趟火车其实只有2000张票,200w个人来买,基本没有人能买成功,请求有效率为0】

    1. 读多写少的常用多使用缓存

这是一个典型的读多写少的应用场景【一趟火车其实只有2000张票,200w个人来买,最多2000个人下单成功,其他人都是查询库存,写比例只有0.1%,读比例占99.9%】,非常适合使用缓存。

秒杀架构设计

前端层设计

首先要有一个展示秒杀商品的页面, 在这个页面上做一个秒杀活动开始的倒计时, 在准备阶段内用户会陆续打开这个秒杀的页面, 并且可能不停的刷新页面。这里需要考虑两个问题:

  1. 第一个是秒杀页面的展示我们知道一个html页面还是比较大的,即使做了压缩,http头和内容的大小也可能高达数十K,加上其他的css, js,图片等资源,如果同时有几千万人参与一个商品的抢购,一般机房带宽也就只有1G~10G,网络带宽就极有可能成为瓶颈,

所以这个页面上各类静态资源首先应分开存放,然后放到cdn节点上分散压力,由于CDN节点遍布全国各地,能缓冲掉绝大部分的压力,而且还比机房带宽便宜~

  1. 第二个是倒计时出于性能原因这个一般由js调用客户端本地时间,就有可能出现客户端时钟与服务器时钟不一致,另外服务器之间也是有可能出现时钟不一致

客户端与服务器时钟不一致可以采用客户端定时和服务器同步时间,这里考虑一下性能问题,用于同步时间的接口由于不涉及到后端逻辑,只需要将当前web服务器的时间发送给客户端就可以了,因此速度很快,就我以前测试的结果来看,
一台标准的web服务器2W+QPS不会有问题,如果100W人同时刷,100W QPS也只需要50台web,一台硬件LB就可以了~,并且web服务器群是可以很容易的横向扩展的(LB+DNS轮询),这个接口可以只返回一小段json格式的数据,而且可以优化一下减少不必要cookie和其他http头的信息,所以数据量不会很大,一般来说网络不会成为瓶颈,即使成为瓶颈也可以考虑多机房专线连通,加智能DNS的解决方案;web服务器之间时间不同步可以采用统一时间服务器的方式,比如每隔1分钟所有参与秒杀活动的web服务器就与时间服务器做一次时间同步。

浏览器层请求拦截

  • (1) 产品层面: 用户点击“查询”或者“购票”后,按钮置灰,禁止用户重复提交请求;
  • (2) JS层面: 限制用户在x秒之内只能提交一次请求;

站点层设计

前端层的请求拦截,只能拦住小白用户(不过这是99%的用户哟),高端的程序员根本不吃这一套,写个for循环,直接调用你后端的http请求,怎么整?

  • (1) 同一个uid,限制访问频度,做页面缓存,x秒内到达站点层的请求,均返回同一页面
  • (2) 同一个item的查询,例如手机车次,做页面缓存,x秒内到达站点层的请求,均返回同一页面,如此限流,又有99%的流量会被拦截在站点层。

服务层设计

站点层的请求拦截,只能拦住普通程序员,高级黑客,假设他控制了10w台肉鸡(并且假设买票不需要实名认证),这下uid的限制不行了吧?怎么整?

  • (1) 大哥,我是服务层,我清楚的知道小米只有1万部手机,我清楚的知道一列火车只有2000张车票,我透10w个请求去数据库有什么意义呢?

对于写请求,做请求队列,每次只透过有限的写请求去数据层,如果均成功再放下一批,如果库存不够则队列里的写请求全部返回“已售完”;

  • (2) 对于读请求,还用说么?

cache来抗,不管是memcached还是redis,单机抗个每秒10w应该都是没什么问题的;

如此限流,只有非常少的写请求,和非常少的读缓存mis的请求会透到数据层去,又有99.9%的请求被拦住了。

模块设计

    1. 用户请求分发模块:使用Nginx或Apache将用户的请求分发到不同的机器上。
    1. 用户请求预处理模块:判断商品是不是还有剩余来决定是不是要处理该请求。
    1. 用户请求处理模块:把通过预处理的请求封装成事务提交给数据库,并返回是否成功。
    1. 数据库接口模块:该模块是数据库的唯一接口,负责与数据库交互,提供RPC接口供查询是否秒杀结束、剩余数量等信息。

重启与过载保护

如果系统发生“雪崩”,贸然重启服务,是无法解决问题的。
最常见的现象是,启动起来后,立刻挂掉。这个时候,最好在入口层将流量拒绝,然后再将重启。
如果是redis/memcache这种服务也挂了,重启的时候需要注意“预热”,并且很可能需要比较长的时间。

秒杀和抢购的场景,流量往往是超乎我们系统的准备和想象的。
这个时候,过载保护是必要的。如果检测到系统满负载状态,拒绝请求也是一种保护措施。在前端设置过滤是最简单的方式,但是,这种做法是被用户“千夫所指”的行为。
更合适一点的是,将过载保护设置在CGI入口层,快速将客户的直接请求返回。

高并发下的数据安全

我们知道在多线程写入同一个文件的时候,会存现“线程安全”的问题(多个线程同时运行同一段代码,如果每次运行结果和单线程运行的结果是一样的,结果和预期相同,就是线程安全的)

如果是MySQL数据库,可以使用它自带的锁机制很好的解决问题,但是,在大规模并发的场景中,是不推荐使用MySQL的。
秒杀和抢购的场景中,还有另外一个问题,就是“超发”,如果在这方面控制不慎,会产生发送过多的情况。
我们也曾经听说过,某些电商搞抢购活动,买家成功拍下后,商家却不承认订单有效,拒绝发货。这里的问题,也许并不一定是商家奸诈,而是系统技术层面存在超发风险导致的。

超发的原因

假设某个抢购场景中,我们一共只有100个商品,在最后一刻,我们已经消耗了99个商品,仅剩最后一个。这个时候,系统发来多个并发请求,这批请求读取到的商品余量都是99个,然后都通过了这一个余量判断,最终导致超发。

悲观锁思路

解决线程安全的思路很多,可以从“悲观锁”的方向开始讨论。

悲观锁,也就是在修改数据的时候,采用锁定状态,排斥外部请求的修改。遇到加锁的状态,就必须等待。

虽然上述的方案的确解决了线程安全的问题,但是,别忘记,我们的场景是“高并发”。也就是说,会很多这样的修改请求,每个请求都需要等待“锁”,某些线程可能永远都没有机会抢到这个“锁”,这种请求就会死在那里。同时,这种请求会很多,瞬间增大系统的平均响应时间,结果是可用连接数被耗尽,系统陷入异常。

FIFO队列思路

那好,那么我们稍微修改一下上面的场景,我们直接将请求放入队列中的,采用FIFO(First Input First Output,先进先出),这样的话,我们就不会导致某些请求永远获取不到锁。看到这里,是不是有点强行将多线程变成单线程的感觉哈。

然后,我们现在解决了锁的问题,全部请求采用“先进先出”的队列方式来处理。

那么新的问题来了,高并发的场景下,因为请求很多,很可能一瞬间将队列内存“撑爆”,然后系统又陷入到了异常状态。或者设计一个极大的内存队列,也是一种方案,但是,系统处理完一个队列内请求的速度根本无法和疯狂涌入队列中的数目相比。也就是说,队列内的请求会越积累越多,最终Web系统平均响应时候还是会大幅下降,系统还是陷入异常。

乐观锁思路

乐观锁,是相对于“悲观锁”采用更为宽松的加锁机制,大都是采用带版本号(Version)更新。实现就是,这个数据所有请求都有资格去修改,但会获得一个该数据的版本号,只有版本号符合的才能更新成功,其他的返回抢购失败

这样的话,我们就不需要考虑队列的问题,不过,它会增大CPU的计算开销。但是,综合来说,这是一个比较好的解决方案。

有很多软件和服务都“乐观锁”功能的支持,例如Redis中的watch就是其中之一。通过这个实现,我们保证了数据的安全。

参考

Powered by Hexo and Hexo-theme-hiker

Copyright © 2017 - 2022 Keep It Simple And Stupid All Rights Reserved.

访客数 : | 访问量 :